535 research outputs found

    Cracklike Dynamics at the Onset of Frictional Sliding

    Get PDF
    We propose an elasto-plastic inspired friction model which incorporates interfacial stiffness. Steady state sliding friction is characterized by a generic nonmonotonic behavior, including both velocity weakening and strengthening branches. In 1D and upon the application of sideway loading, we demonstrate the existence of transient cracklike fronts whose velocity is independent of sound speed, which we propose to be analogous to the recently discovered slow interfacial rupture fronts. Most importantly, the properties of these transient inhomogeneously loaded fronts are determined by steady state front solutions at the {\em minimum} of the sliding friction law, implying the existence of a new velocity scale and a "forbidden gap" of rupture velocities. We highlight the role played by interfacial stiffness and supplement our analysis with 2D scaling arguments.Comment: 4 pages, 2 figure

    Evidence for Induced Magnetization in Superconductor-Ferromagnet Hetero-structures: a Scanning Tunnelling Spectroscopy Study

    Full text link
    We performed scanning tunneling spectroscopy of c-axis oriented YBCO films on top of which ferromagnetic SRO islands were grown epitaxially in-situ. When measured on the ferromagnetic islands, the density of states exhibits small gap-like features consistent with the expected short range penetration of the order parameter into the ferromagnet. However, anomalous split-gap structures are measured on the superconductor in the vicinity of ferromagnetic islands. This observation may provide evidence for the recently predicted induced magnetization in the superconductor side of a superconductor/ ferromagnet junction. The length scale of the effect inside the superconductor was found to be an order of magnitude larger than the superconducting coherence length. This is inconsistent with the theoretical prediction of a penetration depth of only a few superconducting coherence lengths. We discuss a possible origin for this discrepancy

    Spontaneous Breaking of Rotational Symmetry in Rotating Solitons - a Toy Model of Excited Nucleons with High Angular Momentum

    Full text link
    We study the phenomenon of spontaneous breaking of rotational symmetry (SBRS) in the rotating solutions of two types of baby Skyrme models. In the first the domain is a two-sphere and in the other, the Skyrmions are confined to the interior of a unit disk. Numerical full-field results show that when the angular momentum of the Skyrmions increases above a certain critical value, the rotational symmetry of the solutions is broken and the minimal energy configurations become less symmetric. We propose a possible mechanism as to why SBRS is present in the rotating solutions of these models, while it is not observed in the `usual' baby Skyrme model. Our results might be relevant for a qualitative understanding of the non-spherical deformation of excited nucleons with high orbital angular momentum.Comment: RevTex, 9 pages, 9 figures. Added conten

    Hexagonal Structure of Baby Skyrmion Lattices

    Full text link
    We study the zero-temperature crystalline structure of baby Skyrmions by applying a full-field numerical minimization algorithm to baby Skyrmions placed inside different parallelogramic unit-cells and imposing periodic boundary conditions. We find that within this setup, the minimal energy is obtained for the hexagonal lattice, and that in the resulting configuration the Skyrmion splits into quarter-Skyrmions. In particular, we find that the energy in the hexagonal case is lower than the one obtained on the well-studied rectangular lattice, in which splitting into half-Skyrmions is observed.Comment: RevTeX, 7 pages, 6 figure

    Scanning tunneling spectroscopy characterization of the pseudogap and the x = 1/8 anomaly in La2-xSrxCuO4 thin films

    Full text link
    Using scanning tunneling spectroscopy we examined the local density of states of thin c-axis La2-xSrxCuO4 films, over wide doping and temperature ranges. We found that the pseudogap exists only at doping levels lower than optimal. For x = 0.12, close to the 'anomalous' x = 1/8 doping level, a zero bias conductance peak was the dominant spectral feature, instead of the excepted V- shaped (c-axis tunneling) gap structure. We have established that this surprising effect cannot be explained by tunneling into (110) facets. Possible origins for this unique behavior are discussed.Comment: 15 pages, 6 figure

    Evidence for Crossed Andreev Reflections in bilayers of (100)YBCO and the itinerant ferromagnet SrRuO3

    Full text link
    Scanning tunneling spectroscopy measurements on thin epitaxial SrRuO3/(100)YBCO ferromagnet/superconductor bilayers, reveal localized regions in which the superconductor order parameter penetrates the ferromagnet to more than 26 nm, an order of magnitude larger than the coherence length in the ferromagnetic layer. These regions consist of narrow (< 10 nm) and long strips, separated by at least 200 nm, consistent with the known magnetic domain wall structure in SrRuO3. We attributed this behavior to Crossed Andreev Reflections, taking place in the vicinity of the magnetic domain walls.Comment: submitted to PR

    Complete eigenstates of identical qubits arranged in regular polygons

    Full text link
    We calculate the energy eigenvalues and eigenstates corresponding to coherent single and multiple excitations of an array of N identical qubits or two-level atoms (TLA's) arranged on the vertices of a regular polygon. We assume only that the coupling occurs via an exchange interaction which depends on the separation between the qubits. We include the interactions between all pairs of qubits, and our results are valid for arbitrary distances relative to the radiation wavelength. To illustrate the usefulness of these states, we plot the distance dependence of the decay rates of the n=2 (biexciton) eigenstates of an array of 4 qubits, and tabulate the biexciton eigenvalues and eigenstates, and absorption frequencies, line widths, and relative intensities for polygons consisting of N=2,...,9 qubits in the long-wavelength limit.Comment: Added a figure showing how these results can be used to compute deviations from "equal collective decoherence" approximation

    Memory CD4+ T Cells in Immunity and Autoimmune Diseases

    Get PDF
    CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases
    • …
    corecore